From cb3610f797a6eefee603e0cf62e5670c14952716 Mon Sep 17 00:00:00 2001 From: Yaksher <yaksher.git@gmail.com> Date: Sat, 11 Nov 2023 22:56:13 -0800 Subject: [PATCH] Rename outcomes to categories; unpack model_dict global --- bayes.py | 44 ++++++++++++++++++++------------------------ main.py | 18 +++++++++--------- 2 files changed, 29 insertions(+), 33 deletions(-) diff --git a/bayes.py b/bayes.py index 6752762a..2805d46c 100644 --- a/bayes.py +++ b/bayes.py @@ -11,50 +11,46 @@ def tokenize(text): return [y for y in [re.sub('[^a-z0-9]', '', x) for x in text.lower().split(" ")] if len(y)] def train(dataset): - model_dict = {} - count_of_word_by_outcome = {} + global count_of_word_by_category + global num_data_points + global num_data_points_in_category + count_of_word_by_category = {} num_data_points = len(dataset) - count_of_data_points_with_outcome = Counter() + num_data_points_in_category = Counter() for point in dataset: name = point['name'] classification = point['classification'] - count_of_data_points_with_outcome[classification] += 1 - if classification not in count_of_word_by_outcome: - count_of_word_by_outcome[classification] = Counter() + num_data_points_in_category[classification] += 1 + if classification not in count_of_word_by_category: + count_of_word_by_category[classification] = Counter() words = set(tokenize(point['contents'])) for word in words: - count_of_word_by_outcome[classification][word] += 1 - - model_dict['count_of_word_by_outcome'] = count_of_word_by_outcome - model_dict['num_data_points'] = num_data_points - model_dict['count_of_data_points_with_outcome'] = count_of_data_points_with_outcome - - return model_dict + count_of_word_by_category[classification][word] += 1 """ TODO - Implement the following functions. -In each of these functions, you can use the MODEL variable which is a dictionary which has three members: - MODEL['count_of_word_by_outcome'][outcome][word] = Total number of documents in the category 'outcome' in which this word appears - MODEL['num_data_points'] = Total number of documents in the data set - MODEL['count_of_data_points_with_outcome'][outcome] = Total number of documents in the category 'outcome' +After training (which is run before your code), the following 3 global variables are available: + count_of_word_by_category[category][word] = Total number of documents in the category 'category' in which this word appears + num_data_points = Total number of documents in the data set + num_data_points_in_category[category] = Total number of documents in the category 'category' """ @cache -def pr_outcome(outcome : str) : # Pr(outcome) +def pr_category(category : str) : # Pr(category) return 0 @cache -def pr_word_given_outcome(word : str, outcome : str, num_words_in_document : int): # Pr(word | outcome) +def pr_word_given_category(word : str, category : str, num_words_in_document : int): # Pr(word | category) return 0 -def pr_outcome_given_words(words : List[str], outcome : str): # Pr(outcome | words) +def pr_category_given_words(words : List[str], category : str): # Pr(category | words) return 0 -def predict(outcomes, words): +def predict(categories, words): best = None best_likelihood = -inf - for outcome in outcomes: - pr = pr_outcome_given_words(words, outcome) + for category in categories: + pr = pr_category_given_words(words, category) if pr > best_likelihood: - best = outcome + best = category best_likelihood = pr return best diff --git a/main.py b/main.py index 191ba508..d4fa6302 100644 --- a/main.py +++ b/main.py @@ -8,25 +8,25 @@ VALIDATE = 'data/validate.json' train = json.loads(open(TRAIN).read()) validate = json.loads(open(VALIDATE).read()) -def test(dataset, outcomes): +def test(dataset, categories): answers = dict([x.split(" ") for x in open(dataset + "_validate.txt").read().split("\n")[:-1]]) - bayes.model_dict = bayes.train(train[dataset]) + bayes.train(train[dataset]) - correct_by_outcome = Counter() - incorrect_by_outcome = Counter() + correct_by_category = Counter() + incorrect_by_category = Counter() for point in validate[dataset]: words = set(bayes.tokenize(point['contents'])) - prediction = bayes.predict(outcomes, words) + prediction = bayes.predict(categories, words) answer = answers[point['name']] if prediction == answer: - correct_by_outcome[answer] += 1 + correct_by_category[answer] += 1 else: - incorrect_by_outcome[answer] += 1 + incorrect_by_category[answer] += 1 - print(correct_by_outcome) - print(incorrect_by_outcome) + print(correct_by_category) + print(incorrect_by_category) test('tweets', set(['positive', 'negative'])) test('emails', set(['spam', 'ham'])) -- GitLab