kernel.c 12.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
#include "kernel.hh"
#include "k-apic.hh"
#include "k-vmiter.hh"
#include "util.h"
#include <atomic>

// kernel.c
//
//    This is the kernel.


// INITIAL PHYSICAL MEMORY LAYOUT
//
//  +-------------- Base Memory --------------+
//  v                                         v
// +-----+--------------------+----------------+--------------------+---------/
// |     | Kernel      Kernel |       :    I/O | App 1        App 1 | App 2
// |     | Code + Data  Stack |  ...  : Memory | Code + Data  Stack | Code ...
// +-----+--------------------+----------------+--------------------+---------/
// 0  0x40000              0x80000 0xA0000 0x100000             0x140000
//                                             ^
//                                             | \___ PROC_SIZE ___/
//                                      PROC_START_ADDR

#define PROC_SIZE 0x40000       // initial state only

proc ptable[NPROC];             // array of process descriptors
                                // Note that `ptable[0]` is never used.
proc* current;                  // pointer to currently executing proc

#define HZ 100                  // timer interrupt frequency (interrupts/sec)
static std::atomic<unsigned long> ticks; // # timer interrupts so far


// Memory state
//    Information about physical page with address `pa` is stored in
//    `pages[pa / PAGESIZE]`. In the handout code, each `pages` entry
//    holds an `refcount` member, which is 0 for free pages.
//    You can change this as you see fit.

pageinfo pages[NPAGES];


[[noreturn]] void schedule();
[[noreturn]] void run(proc* p);
void exception(regstate* regs);
uintptr_t syscall(regstate* regs);
void memshow();

extern void memdump_virtual(x86_64_pagetable* pagetable, const char* name);
extern void memdump_virtual_all(void);
extern void memdump_physical(void);

// kernel_start(command)
//    Initialize the hardware and processes and start running. The `command`
//    string is an optional string passed from the boot loader.

static void process_setup(pid_t pid, const char* program_name);

void kernel_start(const char* command) {
    // initialize hardware
    init_hardware();
    log_printf("Starting WeensyOS\n");

    ticks = 1;
    init_timer(HZ);

    // clear screen
    console_clear();
 
    // (re-)initialize kernel page table
    map_to_nobody(kernel_pagetable, (uintptr_t)NULL);

    memory_foreach(kernel_pagetable, PROC_START_ADDR, map_to_kernel_space);
    map_to_user_space(kernel_pagetable, CONSOLE_ADDR);

    // set up process descriptors
    for (pid_t i = 0; i < NPROC; i++) {
        ptable[i].pid = i;
        ptable[i].state = P_FREE;
    }
    if (command && !program_image(command).empty()) {
        process_setup(1, command);
    } else {
        process_setup(1, "allocator");
        process_setup(2, "allocator2");
        process_setup(3, "allocator3");
        process_setup(4, "allocator4");
    }
    
    // Switch to the first process using run()
    run(&ptable[1]);
}


// kalloc(sz)
//    Kernel memory allocator. Allocates `sz` contiguous bytes and
//    returns a pointer to the allocated memory, or `nullptr` on failure.
//
//    The returned memory is initialized to 0xCC, which corresponds to
//    the x86 instruction `int3` (this may help you debug). You'll
//    probably want to reset it to something more useful.
//
//    On WeensyOS, `kalloc` is a page-based allocator: if `sz > PAGESIZE`
//    the allocation fails; if `sz < PAGESIZE` it allocates a whole page
//    anyway.
//
//    The handout code returns the next allocatable free page it can find.
//    It checks all pages. (You could maybe make this faster!)

void* kalloc(size_t sz) {
    if (sz > PAGESIZE) {
        return nullptr;
    }

    for (uintptr_t pa = 0; pa != MEMSIZE_PHYSICAL; pa += PAGESIZE) {
        if (allocatable_physical_address(pa)
            && !pages[pa / PAGESIZE].used()) {
            ++pages[pa / PAGESIZE].refcount;
            memset((void*) pa, 0xCC, PAGESIZE);
            return (void*) pa;
        }
    }
    return nullptr;
}


// kfree(kptr)
//    Free `kptr`, which must have been previously returned by `kalloc`.
//    If `kptr == nullptr` does nothing.

void kfree(void* kptr) {
    (void) kptr;
    assert(false); 
}

// process_setup(pid, program_name)
//    Load application program `program_name` as process number `pid`.
//    This loads the application's code and data into memory, sets its
//    %rip and %rsp, gives it a stack page, and marks it as runnable.

void process_setup(pid_t pid, const char* program_name) {
    init_process(&ptable[pid], 0);

    // initialize process page table
    x86_64_pagetable *process_pagetable = kalloc_pagetable();
    ptable[pid].pagetable = process_pagetable;
    map_to_nobody(process_pagetable, (uintptr_t)NULL);
    memory_foreach(process_pagetable, PROC_START_ADDR, map_to_kernel_space);
    map_to_user_space(process_pagetable, CONSOLE_ADDR);

    // obtain reference to the program image
    program_image pgm(program_name);

    // allocate and map global memory required by loadable segments
    for (auto seg = pgm.begin(); seg != pgm.end(); ++seg) {
        for (uintptr_t a = round_down(seg.va(), PAGESIZE);
             a < seg.va() + seg.size();
             a += PAGESIZE) {
            uintptr_t pa = (uintptr_t) kalloc(PAGESIZE);
            memory_map(process_pagetable, a, pa, PTE_PWU);
        }
    }

    // initialize data in loadable segments
    for (auto seg = pgm.begin(); seg != pgm.end(); ++seg) {
        void *pa = memory_virtual_to_physical(process_pagetable, seg.va());
        memset(pa, 0, seg.size());
        memcpy(pa, seg.data(), seg.data_size());
    }

    // mark entry point
    ptable[pid].regs.reg_rip = pgm.entry();

    // allocate and map stack segment
    uintptr_t stack_addr = MEMSIZE_VIRTUAL - PAGESIZE;
    uintptr_t pa = (uintptr_t) kalloc(PAGESIZE);
    memory_map(process_pagetable, stack_addr, pa, PTE_PWU);
    ptable[pid].regs.reg_rsp = stack_addr + PAGESIZE;

    // mark process as runnable
    ptable[pid].state = P_RUNNABLE;
}



// exception(regs)
//    Exception handler (for interrupts, traps, and faults).
//
//    The register values from exception time are stored in `regs`.
//    The processor responds to an exception by saving application state on
//    the kernel's stack, then jumping to kernel assembly code (in
//    k-exception.S). That code saves more registers on the kernel's stack,
//    then calls exception().
//
//    Note that hardware interrupts are disabled when the kernel is running.

void exception(regstate* regs) {
    // Copy the saved registers into the `current` process descriptor.
    current->regs = *regs;
    regs = &current->regs;

    // It can be useful to log events using `log_printf`.
    // Events logged this way are stored in the host's `log.txt` file.
    /* log_printf("proc %d: exception %d at rip %p\n",
                current->pid, regs->reg_intno, regs->reg_rip); */

    // Show the current cursor location and memory state
    // (unless this is a kernel fault).
    console_show_cursor(cursorpos);
    if (regs->reg_intno != INT_PF || (regs->reg_errcode & PFERR_USER)) {
        memshow();

        if (TICK_LIMIT != 0 && ticks >= TICK_LIMIT) {
            memdump_physical();
            memdump_virtual_all();
            poweroff();
        }
    }

    // If Control-C was typed, exit the virtual machine.
    check_keyboard();


    // Actually handle the exception.
    switch (regs->reg_intno) {

    case INT_IRQ + IRQ_TIMER:
        ++ticks;
        lapicstate::get().ack();
        schedule();
        break;                  /* will not be reached */

    case INT_PF: {
        // Analyze faulting address and access type.
        uintptr_t addr = rdcr2();
        const char* operation = regs->reg_errcode & PFERR_WRITE
                ? "write" : "read";
        const char* problem = regs->reg_errcode & PFERR_PRESENT
                ? "protection problem" : "missing page";

        if (!(regs->reg_errcode & PFERR_USER)) {
            panic("Kernel page fault on %p (%s %s)!\n",
                  addr, operation, problem);
        }
        console_printf(CPOS(24, 0), 0x0C00,
                       "Process %d page fault on %p (%s %s, rip=%p)!\n",
                       current->pid, addr, operation, problem, regs->reg_rip);
        current->state = P_BROKEN;
        break;
    }

    default:
        panic("Unexpected exception %d!\n", regs->reg_intno);

    }


    // Return to the current process (or run something else).
    if (current->state == P_RUNNABLE) {
        run(current);
    } else {
        schedule();
    }
}


// syscall(regs)
//    System call handler.
//
//    The register values from system call time are stored in `regs`.
//    The return value, if any, is returned to the user process in `%rax`.
//
//    Note that hardware interrupts are disabled when the kernel is running.

int syscall_page_alloc(uintptr_t addr);

uintptr_t syscall(regstate* regs) {
    // Copy the saved registers into the `current` process descriptor.
    current->regs = *regs;
    regs = &current->regs;

    // It can be useful to log events using `log_printf`.
    // Events logged this way are stored in the host's `log.txt` file.
    /* log_printf("proc %d: syscall %d at rip %p\n",
                  current->pid, regs->reg_rax, regs->reg_rip); */

    // Show the current cursor location and memory state.
    console_show_cursor(cursorpos);
    memshow();

    // If Control-C was typed, exit the virtual machine.
    check_keyboard();


    // Actually handle the exception.
    switch (regs->reg_rax) {

    case SYSCALL_PANIC:
        panic(nullptr);         // does not return

    case SYSCALL_GETPID:
        return current->pid;

    case SYSCALL_YIELD:
        current->regs.reg_rax = 0;
        schedule();             // does not return

    case SYSCALL_PAGE_ALLOC:
        return syscall_page_alloc(current->regs.reg_rdi);

    default:
        panic("Unexpected system call %ld!\n", regs->reg_rax);

    }

    panic("Should not get here!\n");
}


// syscall_page_alloc(addr)
//    Handles the SYSCALL_PAGE_ALLOC system call. This function
//    should implement the specification for `sys_page_alloc`
//    in `u-lib.hh` (but in the handout code, it does not).

int syscall_page_alloc(uintptr_t addr) {
    uintptr_t pa = (uintptr_t) kalloc(PAGESIZE);
    if (pa == 0) return -1;
    memory_map(current->pagetable, addr, pa, PTE_PWU);
    memset(memory_virtual_to_physical(current->pagetable, addr), 0, PAGESIZE);
    return 0;
}


// schedule
//    Pick the next process to run and then run it.
//    If there are no runnable processes, spins forever.

void schedule() {
    pid_t pid = current->pid;
    for (unsigned spins = 1; true; ++spins) {
        pid = (pid + 1) % NPROC;
        if (ptable[pid].state == P_RUNNABLE) {
            run(&ptable[pid]);
        }

        // If Control-C was typed, exit the virtual machine.
        check_keyboard();

        // If spinning forever, show the memviewer.
        if (spins % (1 << 12) == 0) {
            memshow();
            log_printf("%u\n", spins);
        }
    }
}


// run(p)
//    Run process `p`. This involves setting `current = p` and calling
//    `exception_return` to restore its page table and registers.

void run(proc* p) {
    assert(p->state == P_RUNNABLE);
    current = p;

    // Check the process's current pagetable.
    check_pagetable(p->pagetable);

    // This function is defined in k-exception.S. It restores the process's
    // registers then jumps back to user mode.
    exception_return(p);

    // should never get here
    while (true) {
    }
}


// memshow()
//    Draw a picture of memory (physical and virtual) on the CGA console.
//    Switches to a new process's virtual memory map every 0.25 sec.
//    Uses `console_memviewer()`, a function defined in `k-memviewer.cc`.

void memshow() {
    static unsigned last_ticks = 0;
    static int showing = 0;

    // switch to a new process every 0.25 sec
    if (last_ticks == 0 || ticks - last_ticks >= HZ / 2) {
        last_ticks = ticks;
        showing = (showing + 1) % NPROC;
    }

    proc* p = nullptr;
    for (int search = 0; !p && search < NPROC; ++search) {
        if (ptable[showing].state != P_FREE
            && ptable[showing].pagetable) {
            p = &ptable[showing];
        } else {
            showing = (showing + 1) % NPROC;
        }
    }

    extern void console_memviewer(proc* vmp);
    console_memviewer(p);
    if (!p) {
        console_printf(CPOS(10, 29), 0x0F00, "VIRTUAL ADDRESS SPACE\n"
            "                          [All processes have exited]\n"
            "\n\n\n\n\n\n\n\n\n\n\n");
    }
}