canonicalize.py 18.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
from support.parsing import parse
from math import prod
from support.expr_types import *
from collections import Counter
import copy
from support.to_string import expr_to_string
import fractions
import numbers
from functools import cache

from decimal import *
getcontext().prec = 20

EPSILON = 10**(-3)


@cache
def create_comm(expr, l, r, op):
    is_com_of_vals = is_add_of_values if op == '+' else is_mul_of_values
    Op = SumOperation if op == '+' else ProductOperation 

    if is_com_of_vals(expr):
        expr = Op(tuple([l, r]))
    elif isinstance(l, BinaryOperation) and l.op == op:
        expr = Op(tuple([l.left, l.right, r]))
    elif isinstance(r, BinaryOperation) and r.op == op:
        expr = Op(tuple([l, r.left, r.right]))
    elif isinstance(l, Op) and isinstance(r, Op):
        expr = Op(tuple(l.values + r.values))
    elif isinstance(l, Op) and (is_value(r) or is_com_of_vals(r)):
        expr = Op(tuple(l.values + tuple([r])))
    elif isinstance(r, Op) and (is_value(l) or is_com_of_vals(l)):
        expr = Op(tuple([l]) + r.values)
    else:
        return expr
    return collapse_comm(expr.values, op, Op)

@cache
def is_monomial(m):
    return isinstance(m, Number) or isinstance(m, str) or (isinstance(m, Term) and is_monomial(m.right)) or\
        (isinstance(m, BinaryOperation) and (\
            (m.op == '^' and is_monomial(m.left) == 1 and isinstance(m.right, Number)) or\
            (m.op == '*' and (\
                is_monomial(m.right) and isinstance(m.left, Number) or
                is_monomial(m.left) and isinstance(m.right, Number)\
            ))
        )
    )

@cache
def get_monomial_coefficient(m):
    if isinstance(m, str):
        return 1
    if isinstance(m, Number):
        return m
    if isinstance(m, Term):
        return m.left
    if isinstance(m, BinaryOperation):
        if is_monomial(m.left) and m.op == '^' and isinstance(m.right, Number):
            return 1
        if is_monomial(m.left) and m.op == '*' and isinstance(m.right, Number):
            return m.right
        if is_monomial(m.right) and m.op == '*' and isinstance(m.left, Number):
            return m.left
    raise Exception("not a monomial")

@cache
def get_monomial_power(m):
    if isinstance(m, str):
        return 1
    if isinstance(m, Number):
        return 0
    if isinstance(m, Term) and is_monomial(m.right):
        return get_monomial_power(m.right)
    if isinstance(m, BinaryOperation):
        if is_monomial(m.left) and m.op == '^' and isinstance(m.right, Number):
            return m.right
        if is_monomial(m.left) and m.op == '*' and isinstance(m.right, Number):
            return get_monomial_power(m.left)
        if is_monomial(m.right) and m.op == '*' and isinstance(m.left, Number):
            return get_monomial_power(m.right)
    raise Exception("not a monomial")

@cache
def get_monomial_base(m, op):
    if isinstance(m, str):
        return m
    if isinstance(m, Number):
        return 1
    if isinstance(m, Term) and is_monomial(m.right):
        return get_monomial_base(m.right, op)
    if isinstance(m, BinaryOperation):
        if is_monomial(m.left) and m.op == '^' and isinstance(m.right, Number):
            return m.left if op == '*' else m
        if is_monomial(m.left) and m.op == '*' and isinstance(m.right, Number):
            return get_monomial_base(m.left, op)
        if is_monomial(m.right) and m.op == '*' and isinstance(m.left, Number):
            return get_monomial_base(m.right, op)
    raise Exception("not a monomial")

@cache
def get_base(a, op):
    if isinstance(a, Number):
        return 1
    if is_monomial(a):
        return get_monomial_base(a, op)
    if isinstance(a, BinaryOperation) and a.op == '^' and isinstance(a.left, Number):
        return a.left
    return a

def coerce_float(x):
    if x is None:
        return Decimal('Infinity')
    if is_int(x): x = Decimal(x)
    if isinstance(x, fractions.Fraction): x = Decimal(x.numerator)/Decimal(x.denominator)
    if isinstance(x, float): x = Decimal(x)
    return x


@cache
def collect_likes(terms, op):
    by_var = {}
    for t in terms:
        s = simplify(t)
        v = frozenset(collect_variables(s))
        if v not in by_var:
            by_var[v] = []
        by_var[v].append(s)
    result = []
    for varset in by_var:
        exprs = by_var[varset]
        by_func = {}
        for a in exprs:
            f = get_base(a, op)
            if f not in by_func:
                by_func[f] = []
            by_func[f].append(a)
        for func in by_func:
            funcset = by_func[func]
            if op == '*':
                coeff = 1
                power = 0
                col = []
                rest = []
                for f in funcset:
                    if isinstance(f, Number):
                        if int(f) == f:
                            f = int(f)
                        if int(coeff) == coeff:
                            coeff = int(coeff)
                        if isinstance(coeff, Decimal) or isinstance(f, Decimal) or isinstance(coeff, float) or isinstance(f, float):
                            coeff = coerce_float(coeff)
                            f = coerce_float(f)
                        coeff *= f
                    elif is_monomial(f):
                        coeff *= get_monomial_coefficient(f)
                        power += get_monomial_power(f)
                    elif isinstance(f, BinaryOperation) and f.op == '^' and isinstance(f.left, Number) and len(collect_variables(f.right)) > 0:
                        col.append(simplify(f.right)) 
                    else:
                        rest.append(simplify(f))
                if is_monomial(f) or isinstance(f, Number):
                    result.append(simplify(Term(coeff, BinaryOperation('^', func, power))))
                elif len(col) > 0:
                    result.append(simplify(BinaryOperation('^', func, SumOperation(tuple(col)))))
                result += tuple(rest)
            elif op == '+':
                coeff = 0
                for f in funcset:
                    if isinstance(f, Number):
                        if int(f) == f:
                            f = int(f)
                        if int(coeff) == coeff:
                            coeff = int(coeff)
                        if isinstance(coeff, Decimal) or isinstance(f, Decimal) or isinstance(coeff, float) or isinstance(f, float):
                            coeff = coerce_float(coeff)
                            f = coerce_float(f)
                        coeff += f
                    elif is_monomial(f):
                        coeff += get_monomial_coefficient(f)
                    else:
                        result.append(simplify(f))
                if coeff == 1:
                    result.append(func)
                elif func is None:
                    result.append(coeff)
                elif coeff != 0:
                    result.append(simplify(Term(coeff, func)))
    return tuple(result)
    
@cache
def collapse_comm(vals, op, Op):
    recs = [tuple(x.values) for x in vals if isinstance(x, Op)]
    vals = [x for x in vals if not isinstance(x, Op)]
    for vs in recs:
        vals += vs

    vals = tuple([simplify(x) for x in vals])
    vals = collect_likes(vals, op)
    vals = [simplify(x) for x in vals]

    if op == '*':
        t = None
        const = None

    expr = Op(tuple(vals))

    if len(expr.values) == 1:
        return expr.values[0]
    if len(expr.values) == 0:
        return 0 if op == '+' else 1
    return expr

@cache
def evaluate_function(f):
    if f.name == 'diff': 
        from src.differentiation import evaluate_diff
        x = simplify(evaluate_diff(simplify(f.arguments[0]), f.arguments[1])) 
        if is_constant(x, f.arguments[1]):
            return (True, x)
        return (False, x)
    elif f.name == 'arctan':
        return (False, Function(f.name, tuple([simplify(f.arguments[0])])))
    elif f.name == 'e':
        if f.arguments[0] == 0:
            return (True, 1)
        else:
            return (False, f)
    elif f.name == 'sqrt':
        return (False, f)
    elif f.name == 'newton':
        from src.newton import newton
        return (True, newton(*f.arguments))

    raise Exception("function not implemented")

@cache
def replace_in_expr(expr, x, y):
    if isinstance(expr, Number):
        return expr
    if isinstance(expr, Variable) and expr == x:
        return y
    if isinstance(expr, Variable) and expr != x:
        return expr 
    if isinstance(expr, BinaryOperation):
        return BinaryOperation(expr.op, replace_in_expr(expr.left, x, y), replace_in_expr(expr.right, x, y))
    if isinstance(expr, Function):
        f = Function(expr.name, tuple([replace_in_expr(a, x, y) for a in expr.arguments]))
        if f.name == 'sqrt':
            from src.newton import newton
            x = newton(Minus(Pow('x', 2), f.arguments[0]), 2, 'x') 
            return x
        return f
    if isinstance(expr, Term):
        return Term(expr.left, replace_in_expr(expr.right, x, y))
    if isinstance(expr, SumOperation):
        return SumOperation(tuple([replace_in_expr(z, x, y) for z in expr.values]))
    if isinstance(expr, ProductOperation):
        return ProductOperation(tuple([replace_in_expr(z, x, y) for z in expr.values]))
    raise Exception("replace not implemented for: " + str(expr))

def eval_expr(expr, args):
    return _eval_expr(expr, tuple(args.items()))

@cache
def _eval_expr(expr, args):
    try:
        for x, y in args:
            expr = simplify(replace_in_expr(expr, x, y))
        return expr
    except (ZeroDivisionError, OverflowError):
        return None
 
def _simplify(expr):
    expr = reduce_expr(expr)
    if isinstance(expr, SumOperation):
        expr = collapse_comm(tuple([simplify(x) for x in expr.values]), '+', SumOperation)
    if isinstance(expr, ProductOperation) and len(expr.values) == 2 and isinstance(expr.values[0], Number):
        expr = Term(simplify(expr.values[0]), simplify(expr.values[1]))
    if isinstance(expr, ProductOperation) and len(expr.values) == 2 and isinstance(expr.values[1], Number):
        expr = Term(simplify(expr.values[1]), simplify(expr.values[0]))
    if isinstance(expr, ProductOperation):
        expr = collapse_comm(tuple([simplify(x) for x in expr.values]), '*', ProductOperation)
    if isinstance(expr, Term):
        r = simplify(expr.right)
        if isinstance(r, Number):
            expr = simplify(BinaryOperation('*', expr.left, r))
        elif isinstance(expr.right, Term):
            a = expr.left
            b = expr.right.left
            if is_int(a): a = int(a)
            if is_int(b): b = int(b)
            if isinstance(a, Decimal) or isinstance(b, Decimal):
                a = coerce_float(a)
                b = coerce_float(b)

            expr = Term(simplify(a*b), simplify(expr.right.right))
        else:
            expr = Term(expr.left, simplify(expr.right))
    if isinstance(expr, BinaryOperation):
        l_is_const, l = _simplify(expr.left)
        r_is_const, r = _simplify(expr.right)
        if l_is_const and r_is_const:
            if is_int(l): l = int(l)
            if is_int(r): r = int(r)

            if isinstance(l, Decimal) or isinstance(r, Decimal) or isinstance(l, float) or isinstance(r, float):
                l = coerce_float(l)
                r = coerce_float(r)
            if expr.op == '/': 
                if isinstance(l, Decimal) or isinstance(r, Decimal) or isinstance(l, float) or isinstance(r, float):
                    if abs(r) < EPSILON:
                        raise ZeroDivisionError()
                    return (True, l / r)
                return (True, fractions.Fraction(l, r))
            elif expr.op == '+': return (True, l + r)
            elif expr.op == '-': return (True, l - r)
            elif expr.op == '*': return (True, l * r)
            elif expr.op == '^': return (True, l ** r)
            raise Exception("binary op not handled: " + str(expr.op))

        old_expr = expr
        expr = BinaryOperation(old_expr.op, l, r) 
        if old_expr.op == '+': expr = create_comm(expr, l, r, '+')
        elif old_expr.op == '*': expr = create_comm(expr, l, r, '*')

    if isinstance(expr, fractions.Fraction):
        if expr.denominator == 1:
            return (True, expr.numerator)
        return (True, expr)
    elif isinstance(expr, Number) and int(expr) == expr:
        return (True, int(expr))
    elif isinstance(expr, Number) and isinstance(expr, Decimal):
        return (True, Decimal(expr))
    elif isinstance(expr, Number):
        return (True, expr)

    if isinstance(expr, Function):
        return evaluate_function(expr)

    return (False, expr)

def reduce_expr(expr):
    expr = distribute(expr)
    expr = addition_reductions(expr)
    expr = division_reductions(expr)
    expr = multiplication_reductions(expr)
    expr = power_reductions(expr)
    return expr

@cache
def simplify(expr):
    if isinstance(expr, fractions.Fraction):
        if expr.denominator == 1:
            return expr.numerator
        return expr
    elif isinstance(expr, Number) and int(expr) == expr:
        return int(expr)
    elif isinstance(expr, Number) and isinstance(expr, Decimal):
        return Decimal(expr)
    elif isinstance(expr, Number):
        return expr


    old = None
    while expr != old:
        old = copy.copy(expr)
        v, expr = _simplify(expr)
        if v is None:
            return expr
    return expr

# a * (x + y)
def distribute(expr):
    if isinstance(expr, BinaryOperation) and expr.op == '*':
        if isinstance(expr.left, BinaryOperation) and expr.left.op in set(['+', '-']):
            expr = BinaryOperation(expr.left.op, BinaryOperation('*', left=expr.left.left, right=expr.right), BinaryOperation('*', left=expr.left.right, right=expr.right))
        elif isinstance(expr.right, BinaryOperation) and expr.right.op in set(['+', '-']):
            expr = BinaryOperation(expr.right.op, BinaryOperation('*', left=expr.left, right=expr.right.left), BinaryOperation('*', left=expr.left, right=expr.right.right))
        elif isinstance(expr.left, SumOperation):
            expr = SumOperation(tuple([BinaryOperation('*', left=expr.right, right=x) for x in expr.left.values]))
        elif isinstance(expr.right, SumOperation):
            expr = SumOperation(tuple([BinaryOperation('*', left=expr.left, right=x) for x in expr.right.values]))
    if isinstance(expr, ProductOperation):
        sums = []
        rest = []
        for x in expr.values:
            if (isinstance(x, BinaryOperation) and x.op == '+') or isinstance(x, SumOperation):
                sums.append(x)
            else:
                rest.append(x)
        if len(sums) > 0:
            while len(rest) > 0:
                x = rest.pop()
                sums[0] = BinaryOperation('*', x, sums[0])
        expr = ProductOperation(tuple(sums + rest))
    return expr

def power_reductions(expr):
    if isinstance(expr, BinaryOperation) and expr.op == '^':
        if isinstance(expr.left, Number):
            if expr.left == 0:
                return 0
            if expr.left == 1:
                return 1
        if isinstance(expr.right, Number):
            if expr.right == 0:
                return 1
            if expr.right == 1:
                return expr.left
    if isinstance(expr, Term) and isinstance(expr.right, BinaryOperation) and expr.right.op == '^':
        if isinstance(expr.right.right, Number):
            if expr.right.right == 0:
                return expr.left
            if expr.right.right == 1:
                return simplify(Term(expr.left, expr.right.left))
    return expr

def addition_reductions(expr):
    if isinstance(expr, BinaryOperation) and expr.op == '+':
        if isinstance(expr.left, Number):
            if expr.left == 0:
                return expr.right
        if isinstance(expr.right, Number):
            if expr.right == 0:
                return expr.left
    if isinstance(expr, BinaryOperation) and expr.op == '-':
        if isinstance(expr.left, Number):
            if expr.right == 0:
                return expr.left
        return BinaryOperation('+', simplify(expr.left), simplify(BinaryOperation('*', -1, expr.right))) 
    return expr

def division_reductions(expr):
    if isinstance(expr, BinaryOperation) and expr.op == '/':
        if expr.right == 1:
            return expr.left
        if is_monomial(expr.left) and is_monomial(expr.right):
            l = get_monomial_base(expr.left, '*'), get_monomial_power(expr.left), get_monomial_coefficient(expr.left)
            r = get_monomial_base(expr.right, '*'), get_monomial_power(expr.right), get_monomial_coefficient(expr.right)
            if l[0] == r[0] and isinstance(l[2], numbers.Rational) and isinstance(r[2], numbers.Rational):
                x = simplify(BinaryOperation('*', fractions.Fraction(l[2], r[2]), BinaryOperation('^', l[0], BinaryOperation('-', l[1], r[1]))))
                return x
        if isinstance(expr.left, Term) and isinstance(expr.right, Term):
            return Term(simplify(fractions.Fraction(expr.left.left, expr.right.left)), simplify(BinaryOperation('/', expr.left.right, expr.right.right)))
        if len(collect_variables(expr.left)) > 0 and isinstance(expr.right, Number):
            return BinaryOperation('*', simplify(fractions.Fraction(1, expr.right)), expr.left)
        if len(collect_variables(expr.right)) > 0 and isinstance(expr.left, Number):
            result = BinaryOperation('*', expr.left, BinaryOperation('/', 1, expr.right))
        if expr.right == 1:
            return expr.left

    return expr

def multiplication_reductions(expr):
    if isinstance(expr, BinaryOperation) and expr.op == '*':
        if isinstance(expr.left, Number):
            if expr.left == 0:
                return 0
            elif expr.left == 1:
                return expr.right 
        if isinstance(expr.right, Number):
            if expr.right == 0:
                return 0
            elif expr.right == 1:
                return expr.left
    if isinstance(expr, Term):
        if expr.left == 0:
            return 0
        elif expr.left == 1:
            return expr.right
    if isinstance(expr, ProductOperation):
        expr = ProductOperation(tuple([simplify(x) for x in expr.values if x != 1])) 
        if len(expr.values) == 1:
            expr = expr.values[0]
    return expr