1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include "smallobj.h"
//! Default random number seed.
#define DEFAULT_SEED 242424
#define DEFAULT_OBJECT_SIZE 32
#define DEFAULT_CHUNK_SIZE 1000
#define DEFAULT_TOTAL_OBJS 1000000
#define DEFAULT_LIVE_OBJS 10000
// === TYPES ===================================================================
/*!
* This type is used to describe an age-distribution of objects that are
* allocated with the small-object allocator.
*/
typedef struct age_dist_t {
int weight; //!< Relative weighting of this age value
int age; //!< An age to assign to objects
} age_dist_t;
/*!
* This struct describes a single allocation in the small-object pool.
* Each allocation has an age associated with it, which is decremented every
* round by the tester. When the age hits 0, the object is released back to
* the pool.
*/
typedef struct objinfo_t {
uint8_t *mem; //!< Pointer to the memory itself
uint8_t value; //!< Byte value written into the entire memory region
int age; //!< Age of the object; when 0, the object is released
} objinfo_t;
// === MODULE-LOCAL STATE ======================================================
//! When true, this turns on verbose output. Use the "-v" option when running.
static bool verbose = false;
/*!
* The maximum number of age entries allowed to be specified in the command-line
* arguments.
*/
#define MAX_AGE_ENTRIES 5
//! A specification of the age distribution of allocated objects.
static age_dist_t age_distribution[MAX_AGE_ENTRIES] = { {100, 10} };
//! The number of entries in the age_distribution array.
static int num_age_entries = 1;
//! The maximum weight to generate for choosing an object age.
static int max_weight = 100;
// === TESTER FUNCTIONS ========================================================
/*!
* Verify an individual object that has been allocated.
*
* The function returns the number of bytes in the object that don't match the
* expected value. Ideally this returns 0.
*/
size_t check_object(uint8_t *mem, size_t size, uint8_t value) {
assert(mem != NULL);
size_t bad_bytes = 0;
for (size_t i = 0; i < size; i++) {
if (mem[i] != value)
bad_bytes++;
}
return bad_bytes;
}
/*!
* Verify all allocated objects. Error messages are printed for all issues
* identified.
*
* The function returns the number of objects that fail verification. Ideally
* this returns 0.
*/
int check_all_objects(objinfo_t *info, int num_objs, size_t objsize) {
assert(info != NULL);
int bad_objects = 0;
for (int i = 0; i < num_objs; i++) {
// Skip unallocated objects.
if (info[i].mem == NULL)
continue;
// Verify the contents of allocated objects.
size_t bad_bytes = check_object(info[i].mem, objsize, info[i].value);
if (bad_bytes > 0) {
// TODO: PRINT ONLY IF VERBOSE
fprintf(stderr, "ERROR: Object %p has %zu bad bytes\n",
info[i].mem, bad_bytes);
bad_objects++;
}
}
if (bad_objects > 0)
fprintf(stderr, "ERROR: Found %d bad objects\n", bad_objects);
return bad_objects;
}
/*!
* Generates a uniformly distributed random value in the range
* [min_val, max_val]. The maximum value must be at least the minimum value.
*/
int rand_int(int min_val, int max_val) {
assert(max_val >= min_val);
if (min_val == max_val)
return min_val;
return min_val + random() % (max_val - min_val + 1);
}
/*! Generates a new object age based on the age-distribution specification. */
int make_object_age(void) {
int age_idx = rand_int(0, max_weight - 1);
for (int i = 0; i < num_age_entries; i++) {
if (age_idx < age_distribution[i].weight)
return age_distribution[i].age;
age_idx -= age_distribution[i].weight;
}
// Shouldn't get here, unless the max_weight value is wrong or something.
assert(false);
}
void run_test(size_t objsize, int total_objs, int max_live_objs,
smallobj_pool_t *pool) {
assert(total_objs > 0);
assert(max_live_objs > 0);
assert(max_live_objs <= total_objs);
objinfo_t *info = malloc(sizeof(objinfo_t) * max_live_objs);
if (!info) {
fprintf(stderr, "ERROR: Couldn't allocate object-info array for %d "
"live objects\n", max_live_objs);
abort();
}
bzero(info, sizeof(objinfo_t) * max_live_objs);
int objects_allocated = 0; // Total objects allocated
int objects_released = 0; // Total objects released
int live_objects = 0; // Number of objects currently "live"
// Total amount of bytes currently required by the small-object pool
size_t initial_pool_size = total_pool_size(pool);
size_t pool_high_watermark = initial_pool_size;
size_t pool_avg_size = 0;
printf("Initial pool size: %zu bytes\n\n", initial_pool_size);
int round_no = 0;
while (objects_released < total_objs) {
round_no++;
// Iterate through all object-info entries. Decrease the age of each
// live object. If any hits an age of 0, release it.
int released_this_round = 0;
for (int i = 0; i < max_live_objs; i++) {
// Skip entries that are currently empty.
if (info[i].mem == NULL)
continue;
assert(info[i].age > 0);
info[i].age--;
if (info[i].age == 0) {
so_free(pool, info[i].mem);
// Clear the information about this allocation.
info[i].mem = NULL;
info[i].value = 0;
// Update bookkeeping variables.
live_objects--;
objects_released++;
released_this_round++;
}
}
if (released_this_round > 0) {
// Verify all live objects after releasing.
if (check_all_objects(info, max_live_objs, objsize) > 0) {
fprintf(stderr,
"ERROR: Corruption detected after releasing objects\n");
abort();
}
}
// If we have space in our object-info array, and if we still haven't
// allocated all the objects we intended to, allocate some new objects
// for the pool.
int allocated_this_round = 0;
if (objects_allocated < total_objs && live_objects < max_live_objs) {
int to_allocate = rand_int(1, max_live_objs - live_objects);
// Don't exceed the maximum number of objects to create.
if (to_allocate > total_objs - objects_allocated)
to_allocate = total_objs - objects_allocated;
allocated_this_round = to_allocate;
for (int i = 0; i < max_live_objs && to_allocate > 0; i++) {
// Skip entries that are currently in use.
if (info[i].mem != NULL)
continue;
// Found an available entry that can record an allocation.
// This allocation may fail if a new chunk needs to be allocated
// but malloc() can't do it.
info[i].mem = so_alloc(pool);
if (info[i].mem == NULL) {
fprintf(stderr, "ERROR: small-object allocation failed\n");
abort();
}
// Assign an age.
info[i].age = make_object_age();
assert(info[i].age > 0);
// Write a byte value between 1 (0x01) and 200 (0xC8) inclusive,
// into the newly allocated memory region.
info[i].value = (uint8_t) rand_int(1, 200);
memset(info[i].mem, info[i].value, objsize);
// Record that we have one more allocated object.
objects_allocated++;
live_objects++;
to_allocate--;
}
assert(live_objects <= max_live_objs);
assert(objects_allocated >= objects_released);
assert(objects_allocated <= total_objs);
}
if (allocated_this_round > 0) {
// Verify all live objects after allocating.
if (check_all_objects(info, max_live_objs, objsize) > 0) {
fprintf(stderr,
"ERROR: Corruption detected after allocating objects\n");
abort();
}
}
if (released_this_round > 0 || allocated_this_round > 0) {
// Look at the current pool size.
size_t current_pool_size = total_pool_size(pool);
pool_avg_size += current_pool_size;
if (current_pool_size > pool_high_watermark)
pool_high_watermark = current_pool_size;
if (verbose) {
// Print out details of what happened this round.
printf("Round %d:\t-%d\t+%d\tSize = %zu\tHWM = %zu\n", round_no,
released_this_round, allocated_this_round,
current_pool_size, pool_high_watermark);
}
}
}
// Compute average pool size over the entire run.
pool_avg_size /= round_no;
printf("Total rounds: %d\n", round_no);
printf("Average pool size: %zu bytes\n", pool_avg_size);
printf("Pool high-watermark: %zu bytes\n", pool_high_watermark);
size_t final_pool_size = total_pool_size(pool);
printf("Final pool size: %zu bytes\n", final_pool_size);
if (final_pool_size != initial_pool_size) {
fprintf(stderr, "ERROR: Final pool size should be %zu bytes; "
"something bad happened\n", initial_pool_size);
}
}
/*! Prints out program usage details. */
void usage(const char *prog) {
printf("usage: %s [options]\n", prog);
printf("\tRuns the small-object allocator tester with the specified options.\n\n");
printf("-v | --verbose\n");
printf("\tTurns on verbose output during testing.\n\n");
printf("-s <seed> | --seed <seed>\n");
printf("\tSpecifies the random number seed for testing. Default is %d.\n\n",
DEFAULT_SEED);
printf("-S <objsize> | --objsize <objsize>\n");
printf("\tSpecifies the size of objects in the small-object pool. Default is %d.\n\n",
DEFAULT_OBJECT_SIZE);
printf("-C <chunksize> | --chunksize <chunksize>\n");
printf("\tSpecifies the number of objects in each chunk of the small-object pool.\n"
"\tDefault is %d.\n\n", DEFAULT_CHUNK_SIZE);
printf("-T <count> | --total_objs <count>\n");
printf("\tSpecifies the total number of objects to create in the test run.\n"
"\tDefault is %d.\n\n", DEFAULT_TOTAL_OBJS);
printf("-L <count> | --live_objs <count>\n");
printf("\tSpecifies the maximum number of live objects to have at any time\n"
"\tduring the test run. Default is %d.\n\n", DEFAULT_LIVE_OBJS);
printf("-A <age-spec> | --ages <age-spec>\n");
printf("\tSpecifies the ages that may be assigned to objects, along with their\n"
"\trelative weightings. The format is \"weight:age[,weight:age,...]\".\n\n"
"\tFor example, -A \"90:10,10:200\" specifies that 90%% of objects will\n"
"\thave an age of 10, and 10%% of objects will have an age of 200.\n"
"\tTo give all objects the same age, specify just one entry with any\n"
"\tweight and the desired age, e.g. -A \"1:10\" will cause all objects\n"
"\tto have an age of 10.\n\n"
"\tA maximum of %d weight:age pairs may be specified.\n\n", MAX_AGE_ENTRIES);
}
/*! Parses the age-specification string. */
void parse_ages(const char *agespec) {
int i = 0;
char *endp;
long weight, age;
num_age_entries = 0;
max_weight = 0;
while (true) {
// First comes the weight
weight = strtol(agespec, &endp, 10);
if (agespec == endp) {
fprintf(stderr, "ERROR: Couldn't parse weight at index %d\n", i);
exit(1);
}
if (weight <= 0) {
fprintf(stderr, "ERROR: Weight at index %d is not a positive number\n", i);
exit(1);
}
if (*endp == '\0') {
// Reached end of sequence...?!
fprintf(stderr, "ERROR: weight must be followed by an age\n");
exit(1);
}
else if (*endp != ':') {
fprintf(stderr, "ERROR: weight and age must be separated by ':' character\n");
exit(1);
}
// Move to the age part of the spec
agespec = endp + 1;
age = strtol(agespec, &endp, 10);
if (agespec == endp) {
fprintf(stderr, "ERROR: Couldn't parse age at index %d\n", i);
exit(1);
}
if (age <= 0) {
fprintf(stderr, "ERROR: Age at index %d is not a positive number\n", i);
exit(1);
}
// Store the weight:age pair.
age_distribution[i].weight = weight;
age_distribution[i].age = age;
num_age_entries++;
max_weight += weight;
if (*endp == '\0') {
// Reached end of sequence.
break;
}
else if (*endp != ',') {
fprintf(stderr, "ERROR: weight:age pairs must be separated by ',' character\n");
exit(1);
}
agespec = endp + 1;
// Go on to the next index.
i++;
if (i >= MAX_AGE_ENTRIES) {
fprintf(stderr, "ERROR: may only specify up to %d weight:age entries\n",
MAX_AGE_ENTRIES);
exit(1);
}
}
}
/*! Program entry-point. */
int main(int argc, char **argv) {
size_t objsize = DEFAULT_OBJECT_SIZE;
int objects_per_chunk = DEFAULT_CHUNK_SIZE;
int total_objs = DEFAULT_TOTAL_OBJS;
int max_live_objs = DEFAULT_LIVE_OBJS;
unsigned int seed = DEFAULT_SEED;
int ch;
while (true) {
int option_index = 0;
struct option longopts[] = {
{"seed", required_argument, 0, 's'},
{"objsize", required_argument, 0, 'S'},
{"chunksize", required_argument, 0, 'C'},
{"total_objs", required_argument, 0, 'T'},
{"live_objs", required_argument, 0, 'L'},
{"ages", required_argument, 0, 'A'},
{"verbose", no_argument, 0, 'v'},
{0, 0, 0, 0 }
};
ch = getopt_long(argc, argv, "s:S:C:T:L:A:v", longopts, &option_index);
if (ch == -1)
break;
switch (ch) {
case 's':
seed = atoi(optarg);
break;
case 'S':
objsize = atoi(optarg);
if (objsize < (int) sizeof(intptr_t)) {
fprintf(stderr, "ERROR: object size must be at least %zu\n",
sizeof(intptr_t));
exit(1);
}
break;
case 'C':
objects_per_chunk = atoi(optarg);
if (objects_per_chunk < 100) {
fprintf(stderr,
"ERROR: must have at least 100 objects per chunk\n");
exit(1);
}
break;
case 'T':
total_objs = atoi(optarg);
if (total_objs < 1) {
fprintf(stderr,
"ERROR: must have at least 1 total object\n");
exit(1);
}
break;
case 'L':
max_live_objs = atoi(optarg);
if (max_live_objs < 1) {
fprintf(stderr,
"ERROR: must have at least 1 live object\n");
exit(1);
}
break;
case 'A':
// This function will exit the program if a parse error is detected.
parse_ages(optarg);
break;
case 'v':
verbose = true;
break;
case '?':
usage(argv[0]);
exit(0);
break;
default:
printf("?? getopt returned character code 0%o ??\n", ch);
}
}
if (optind < argc) {
fprintf(stderr, "ERROR: unhandled arguments");
while (optind < argc)
fprintf(stderr, " %s", argv[optind++]);
fprintf(stderr, "\n");
exit(1);
}
printf("Small-Object Pool Tester:\n");
printf(" * objects are %zu bytes; chunks hold %d objects\n", objsize,
objects_per_chunk);
printf(" * %d total objects, %d max live at any given time\n",
total_objs, max_live_objs);
printf(" * random seed is %u\n", seed);
printf(" * %d weight:age entries\n", num_age_entries);
for (int i = 0; i < num_age_entries; i++) {
printf("\tweight: %d\tage: %d\n", age_distribution[i].weight,
age_distribution[i].age);
}
printf("\n");
srandom(seed);
smallobj_pool_t *pool = make_so_pool(objsize, objects_per_chunk);
if (!pool) {
fprintf(stderr, "ERROR: cannot allocate small-object pool!");
abort();
}
printf("Running test\n\n");
run_test(objsize, total_objs, max_live_objs, pool);
printf("Releasing small-object pool\n");
release_so_pool(pool);
return 0;
}