1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#!/usr/bin/env python3
#
# fruitbot.py
#
# Run the fruit ninja robot
#
# Team Spaghetti
# John (Jack) Maxfield
# Angelina Ye
# Isabella Zhang
#
# Publish: /visualization_marker_array visualization_msgs/MarkerArray
# Publish: /joint_states
import rospy
from visualization_msgs.msg import Marker
from visualization_msgs.msg import MarkerArray
import numpy as np
import random
from sensor_msgs.msg import JointState
from hw6code.kinematics import Kinematics # todo: can't import from this package
# due to hyphen in name
TWO_PI = 2 * np.pi
# finds number equal to q1 mod 2pi
# which is closest to q0
def closest_rdr_mod_2pi(q0, q1):
q0 /= TWO_PI
q1 /= TWO_PI
dif = q1 - q0
lo = q1 - np.ceil(dif)
hi = q1 - np.floor(dif)
# print(f'q0 = {q0}, q1 = {q1}, lo = {lo}, hi = {hi}')
# assert np.allclose(q1 - lo, np.rint(q1 - lo))
# assert np.allclose(q1 - hi, np.rint(q1 - hi))
# assert (q0 - lo) <= 1.001
# assert (q0 - hi) <= 1.001
# assert np.allclose(abs(hi - lo), 1)
return TWO_PI * lo if abs(q0 - lo) < abs(q0 - hi) else TWO_PI * hi
def mod_pi_range(x):
return ((x + np.pi) % TWO_PI) - np.pi
def interp_away_from_pi(interp_factor, start, end):
start_0 = mod_pi_range(start)
end_0 = mod_pi_range(end)
return (1 - interp_factor) * start_0 + interp_factor * end_0
def interp_joints(q0, q1, i):
return np.array([
(1 - i) * q0[0] + i * q1[0],
(1 - i) * q0[1] + i * q1[1],
interp_away_from_pi(i, q0[2], q1[2]),
(1 - i) * q0[3] + i * q1[3],
(1 - i) * q0[4] + i * q1[4],
(1 - i) * q0[5] + i * q1[5],
])
def totalError(kin, pd, Rd, q):
p = np.zeros((3,1)) # posn
R = np.identity(3) # orientation
kin.fkin(q, p, R)
ep = pd - p.reshape(3)
xd = Rd[:,0]
yd = Rd[:,1]
zd = Rd[:,2]
x = R[:,0]
y = R[:,1]
z = R[:,2]
er = (1/2) * (np.cross(x, xd) + np.cross(y, yd) + np.cross(z, zd))
assert len(ep.shape) == 1
assert len(er.shape) == 1
res = np.hstack((ep, er))
return res
def ikin(kin, pd, Rd, J, q, iterations=25):
q_init = q.copy()
for _ in range(iterations):
e = totalError(kin, pd, Rd, q)
kin.Jac(q, J)
pinv = J.T.dot(np.linalg.inv(J.dot(J.T)))
delta = pinv.dot(e)
q += delta
for i in range(q.shape[0]):
q[i] = closest_rdr_mod_2pi(q_init[i], q[i])
#
# Basic Marker
#
def BasicMarker():
# Configure the basics/shared parameters of the markers.
marker = Marker()
marker.header.frame_id = "world"
marker.header.stamp = rospy.Time.now()
marker.ns = "environment"
marker.action = Marker.ADD
marker.pose.orientation.x = 0.0
marker.pose.orientation.y = 0.0
marker.pose.orientation.z = 0.0
marker.pose.orientation.w = 1.0
marker.color.a = 1.0 # Make non-transparent!
return marker
def spline(t0, t1, t):
if t <= t0: return 0
if t >= t1: return 1
x = (t - t0) / (t1 - t0)
return x * x * (3 - 2 * x)
#
# Add a Cube
#
def AddCube(markers, position, scale, color):
# Add a single cube
markers.append(BasicMarker())
markers[-1].id = len(markers)
markers[-1].type = Marker.CUBE
markers[-1].pose.position.x = position[0]
markers[-1].pose.position.y = position[1]
markers[-1].pose.position.z = position[2]
markers[-1].scale.x = scale[0]
markers[-1].scale.y = scale[1]
markers[-1].scale.z = scale[2]
markers[-1].color.r = color[0]
markers[-1].color.g = color[1]
markers[-1].color.b = color[2]
#
# Add a Cradle
#
def AddCradle(markers, p, colors):
# Set the dimensions.
d = 0.1 # Diameter of cube
l = 0.06 # Length of rail
w = 0.02 # Width of rail
s = (d+w)/2 # Shift from center of cube to center of rail
# Pull out the colors.
(cbase, cposx, cnegx, cposy, cnegy) = colors
# Add the elements.
AddCube(markers, (p[0], p[1], d/2), (d, d, d), cbase)
# AddCube(markers, (p[0]+s, p[1], d/2+s), (w, l, w), cposx)
# AddCube(markers, (p[0]-s, p[1], d/2+s), (w, l, w), cnegx)
# AddCube(markers, (p[0], p[1]+s, d/2+s), (l, w, w), cposy)
# AddCube(markers, (p[0], p[1]-s, d/2+s), (l, w, w), cnegy)
fruit_ids = []
GRAV_ACCEL = -0.5
WORKSPACE_CENTER = np.array([0., 0., 0.6])
WORKSPACE_RADIUS_MIN = 0.2
WORKSPACE_RADIUS_MAX = 0.7
INITIAL_MOVE_TIME = 1
SLICE_BACKWARD = -1.5
SLICE_FORWARD = 0.7
SLICE_TIME = 0.2
# stb
# should satisfy
# interp(-stb, SLICE_TIME - stb, 0)
SLICE_TIME_BEFORE = 0
SLICE_TIME_AFTER = 0
for s in np.arange(0, SLICE_TIME, 0.00001):
SLICE_TIME_BEFORE = s
SLICE_TIME_AFTER = SLICE_TIME - s
i = spline(-SLICE_TIME_BEFORE, SLICE_TIME_AFTER, 0)
if (1 - i) * SLICE_BACKWARD + i * SLICE_FORWARD >= 0:
break
class Fruit:
def __init__(self, ipos, ivel, tzero):
assert isinstance(ipos, np.ndarray)
assert isinstance(ivel, np.ndarray)
self.ipos = np.copy(ipos)
self.ivel = np.copy(ivel)
self.tzero = t
# find next unused id
i = 0
while i in fruit_ids:
i += 1
fruit_ids.append(i)
scale = (0.1, 0.1, 0.1)
color = (1, 0, 1)
self.marker = BasicMarker()
self.marker.id = i
self.marker.type = Marker.CUBE
self.marker.scale.x = scale[0]
self.marker.scale.y = scale[1]
self.marker.scale.z = scale[2]
self.marker.color.r = color[0]
self.marker.color.g = color[1]
self.marker.color.b = color[2]
self.moveMarker(0)
def hit(self):
self.marker.color.r = 1
self.marker.color.g = 0
self.marker.color.b = 0
def pos(self, t):
ts = t - self.tzero
return np.array([
self.ipos[0] + ts * self.ivel[0],
self.ipos[1] + ts * self.ivel[1],
self.ipos[2] + ts * self.ivel[2] + (GRAV_ACCEL / 2) * ts ** 2
])
def vel(self, t):
return np.array([
self.ivel[0],
self.ivel[1],
self.ivel[2] + GRAV_ACCEL * (t - self.tzero)
])
def moveMarker(self, t):
# markers[-1].id = len(markers)
# markers[-1].type = Marker.CUBE
pos = self.pos(t)
self.marker.pose.position.x = pos[0]
self.marker.pose.position.y = pos[1]
self.marker.pose.position.z = pos[2]
# markers[-1].scale.x = scale[0]
# markers[-1].scale.y = scale[1]
# markers[-1].scale.z = scale[2]
# markers[-1].color.r = color[0]
# markers[-1].color.g = color[1]
# markers[-1].color.b = color[2]
def cleanUp(self):
fruit_ids.remove(self.marker.id)
SETTING_UP = 0
SLICING = 1
#
# Main Code
#
if __name__ == "__main__":
# Prepare the node.
rospy.init_node('showtouchandgo')
# Prepare a publisher (latching so new subscribers also get the msg).
viz_pub = rospy.Publisher("/visualization_marker_array", MarkerArray,
queue_size=1, latch=True)
joint_pub = rospy.Publisher("/joint_states", JointState, queue_size=100)
urdf = rospy.get_param('/robot_description')
kin = Kinematics(urdf, 'world', 'tip')
N = kin.dofs()
rospy.loginfo("Loaded URDF for %d joints" % N)
t = 0
rate = 100;
servo = rospy.Rate(rate)
dt = servo.sleep_dur.to_sec()
rospy.loginfo("Running the servo loop with dt of %f seconds (%fHz)" %
(dt, rate))
q = np.zeros(kin.dofs())
J = np.zeros((6,kin.dofs())) # Jacobian
goal_pos = np.array([0.3, 0.3, 0.6])
goal_rot = np.identity(3)
setup_init = np.random.uniform(-1, 1, kin.dofs())
setup_final = np.random.uniform(-1, 1, kin.dofs())
setup_t0 = 0
setup_t1 = 1
col_time = 0
done_slicing = True
slice_final = np.random.uniform(-1, 1, kin.dofs())
currently_slicing = None
cubes = [ ]
while not rospy.is_shutdown():
if done_slicing:
new_fruit = Fruit(
np.array([-3., 0., 0.]),
np.array([
np.random.uniform(0.9, 2),
np.random.uniform(-0.4, 0.4),
np.random.uniform(0.6, 1.1)
]),
t
)
cubes.append(new_fruit)
# find the time of collision
tp = t
collision_times = []
while True:
posn = new_fruit.pos(tp)
if posn[2] < -1:
break
if WORKSPACE_RADIUS_MIN <= np.linalg.norm(WORKSPACE_CENTER - posn) <= WORKSPACE_RADIUS_MAX:
collision_times.append(tp)
tp += dt
if collision_times:
# choose the first collision that works
col_time = collision_times[0]
col_pos = new_fruit.pos(col_time)
col_vel = new_fruit.vel(col_time)
col_unit_vel = col_vel / np.linalg.norm(col_vel)
col_rot = np.identity(3)
x_rot = -col_vel
r = col_pos - WORKSPACE_CENTER
# project direction vector onto x_rot
z_rot = r - x_rot * np.dot(r, x_rot) / np.dot(x_rot, x_rot)
assert np.allclose(0, np.dot(x_rot, z_rot))
y_rot = np.cross(z_rot, x_rot)
print(f'Selected a colision at {col_time}')
print(f'Position: {col_pos}')
print(f'Velocity: {col_vel}')
setup_t0 = t
setup_t1 = min(t + INITIAL_MOVE_TIME, col_time - SLICE_TIME_BEFORE)
setup_init = slice_final.copy()
ikin(kin, col_pos, np.vstack((x_rot, y_rot, z_rot)).T, J, setup_final, 500)
slice_final = setup_final.copy()
slice_final[-1] += SLICE_FORWARD - SLICE_BACKWARD
# print(f'setup_init = {setup_init}')
# print(f'setup_final = {setup_final}')
done_slicing = False
currently_slicing = new_fruit
else:
print(f'Probably cannot slice this fruit')
t += dt
new_cubes = []
for cube in cubes:
cube.moveMarker(t)
if cube.pos(t)[2] > -1000:
new_cubes.append(cube)
else:
cube.cleanUp()
cubes.clear()
cubes.extend(new_cubes)
ar = MarkerArray()
for cube in cubes:
ar.markers.append(cube.marker)
# cube.pose.position.x = np.sin(t)
viz_pub.publish(ar)
msg = JointState()
msg.name.append('theta1')
msg.name.append('theta2')
msg.name.append('theta3')
msg.name.append('theta4')
msg.name.append('theta5')
msg.name.append('theta6')
# if t >= setup_t1:
# mode = SETTING_UP
# elif t <= slice_end_t1
interp = spline(setup_t0, setup_t1, t)
joints = interp_joints(setup_init, setup_final, interp)
swing_interp = spline(col_time - SLICE_TIME_BEFORE, col_time + SLICE_TIME_AFTER, t)
joints[-1] += (1 - swing_interp) * SLICE_BACKWARD + swing_interp * SLICE_FORWARD
msg.position = joints
msg.header.stamp = rospy.Time.now()
if t >= col_time and currently_slicing:
currently_slicing.hit()
if t >= col_time + SLICE_TIME_AFTER + 0.5:
done_slicing = True
joint_pub.publish(msg)
servo.sleep()